Asymptotic behavior of Volterra difference equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Representation of the Solutions of Linear Volterra Difference Equations

This article analyses the asymptotic behaviour of solutions of linear Volterra difference equations. Some sufficient conditions are presented under which the solutions to a general linear equation converge to limits, which are given by a limit formula. This result is then used to obtain the exact asymptotic representation of the solutions of a class of convolution scalar difference equations, w...

متن کامل

Asymptotic Behavior of some Rational Difference Equations

In this difference equation, Stability, Periodicity, boundedness, global Stability. We investigate some qualitative behavior of the solutions of the difference equation

متن کامل

Fuzzy difference equations of Volterra type

In this work we introduce the notion of fuzzy volterra dierence equations and study the dynamicalproperties of some classes of this type of equations. We prove some comparison theorems for theseequations in terms of ordinary volterra dierence equations. Using these results the stability of thefuzzy nonlinear volterra dierence equations is investigated.

متن کامل

Asymptotic behavior of a system of two difference equations of exponential form

In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...

متن کامل

Asymptotic Behavior of Solutions of Discrete Volterra Equations

f : N × R → R, K : N × N → R, K(n, i) = 0 for n < i, and b : N → R. We regard N× R as a metric subspace of the Euclidean plane R2. By a solution of (E) we mean a sequence x : N→ R satisfying (E) for all large n. We say that x is a full solution of (E) if (E) is satisfied for all n. Moreover, if p ∈ N and (E) is satisfied for all n ≥ p, then we say that x is a p-solution. For the sake of conveni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2001

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(00)00312-6